Inboard/outboard plasma actuation on a vertical-axis wind turbine
David Greenblatt and
Ronen Lautman
Renewable Energy, 2015, vol. 83, issue C, 1147-1156
Abstract:
Vertical axis wind turbine (VAWT) blades can experience large positive and large negative angles-of-attack that produce both inboard and outboard dynamic stall. Dielectric barrier discharge (DBD) plasma actuators can control dynamic stall and hence an inboard/outboard switching control technique was developed where encapsulated electrodes were deployed on either side of the blades of an H-rotor turbine. An electromechanical system, including a shaft-mounted micro-switch and high-voltage relays, was developed for the purpose of earthing the inboard encapsulated electrode of the upwind blade with the outboard encapsulated electrode of the downwind blade. The actuators were connected to a high-voltage source via slip-rings and were pulse-modulated to exploit flow instabilities in an on/off feed-forward configuration. Turbine performance measurements showed that switching produced slightly larger improvements than either inboard or outboard actuation alone. The modest differences were traced to weak plasma being generated over the floating encapsulated electrodes, whose source was unavoidable slip-ring conductor proximity. Elimination of the floating electrode plasma resulted in larger performance increments for inboard versus outboard actuation due to the larger dynamic pressure relative to the blades in the upwind swept area of the turbine compared to that in the the downwind swept area.
Keywords: Vertical axis wind turbine; Dielectric barrier discharge plasma actuator; Switching actuation; Feed-forward control; Dynamic stall control (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148115003973
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:83:y:2015:i:c:p:1147-1156
DOI: 10.1016/j.renene.2015.05.020
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().