EconPapers    
Economics at your fingertips  
 

A dual de-icing system for wind turbine blades combining high-power ultrasonic guided waves and low-frequency forced vibrations

Hossein Habibi, Liang Cheng, Haitao Zheng, Vassilios Kappatos, Cem Selcuk and Tat-Hean Gan

Renewable Energy, 2015, vol. 83, issue C, 859-870

Abstract: Wind turbines mounted on cold climate sites are subject to icing which could significantly influence the performance of the turbine blades for harvesting wind energy. In this study, an innovative dual de-icing system under development is described. This either prevents ice accumulation (anti-icing) or removes any ice layer present on the surface of the blade material (de-icing). A modelling study on ultrasonic guided waves propagating in composite blades was used to determine the optimal frequency and location of the transducers for ensuring wave propagation, causing the required level of energy concentration and resulting shear stress across the leading edge of the turbine's blade. In parallel, the effects of low frequency vibrations have been investigated through modal and harmonic analyses. This allowed specification and optimisation of the positioning of shaker(s), together with the magnitude and direction of harmonic forces required to induce sufficient acceleration to the blade surface for ice removal. An appropriate survey was also carried out to evaluate the potential for fatigue failure of the blade due to harmonic forces induced by shakers. The proposed technique configures and presents an active solution for the icing problem, allowing safe and reliable operation of wind turbines in adverse weather conditions.

Keywords: Wind turbine blades; De-icing; Ultrasonic guided waves; Low frequency vibration; Fatigue (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148115004048
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:83:y:2015:i:c:p:859-870

DOI: 10.1016/j.renene.2015.05.025

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:83:y:2015:i:c:p:859-870