Grey Predictor reference model for assisting particle swarm optimization for wind turbine control
Migdat Hodzic and
Li-Chou Tai
Renewable Energy, 2016, vol. 86, issue C, 251-256
Abstract:
This paper proposes an approach of forming the average performance by Grey Modeling, and use an average performance as reference model for performing evolutionary computation with error type control performance index. The idea of the approach is to construct the reference model based on the performance of unknown systems when users apply evolutionary computation to fine-tune the control systems with error type performance index. We apply this approach to particle swarm optimization for searching the optimal gains of baseline PI controller of wind turbines operating at the certain set point in Region 3. In the numerical simulation part, the corresponding results demonstrate the effectiveness of Grey Modeling.
Keywords: Grey predictor; Performance prediction; Intelligent optimization; Particle swarm optimization; PID controller; Wind turbine control (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148115302019
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:86:y:2016:i:c:p:251-256
DOI: 10.1016/j.renene.2015.08.001
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().