The turbulent wake of a monopile foundation
C. Rogan,
J. Miles,
D. Simmonds and
G. Iglesias
Renewable Energy, 2016, vol. 93, issue C, 180-187
Abstract:
An experimental programme is presented, examining the turbulent wake of a monopile foundation in a current. Velocity was recorded across an extensive domain downstream of a model monopile in a 0.5 m deep basin, using an acoustic Doppler velocimeter array. The distribution of turbulent kinetic energy (TKE) is examined across the entire domain. Tests were undertaken using several combinations of pile diameter (D = 0.1 and 0.2 m) and mean flow velocity (u0¯ = 0.08–0.24 m/s), representing typical prototype conditions at a scale of 1:50. It is shown that turbulence can be predicted using the distance downstream (x) and off axis (y), the pile diameter, and the mean flow velocity. Two new parameters are introduced to simplify assessment of proposed structures. Relative Excess Turbulence (RET) is the extra turbulence generated by the pile, normalised by the ambient turbulence. Turbulence Recovery Lengthscale (TRL) is the distance downstream (normalised by D) required for RET to fall below a given threshold. Results show that RET decays exponentially with distance downstream. Across the wake, RET fitted a Gaussian function with peak values at the wake centreline. TRL is estimated at 40 for an RET threshold of 1.0 and 400 for an RET threshold of 0.1.
Keywords: Monopile; Turbulence; Windfarm; Monopile array; Windfarm environmental impact; Current (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116301513
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:93:y:2016:i:c:p:180-187
DOI: 10.1016/j.renene.2016.02.050
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().