A machine learning based approach for predicting blockchain adoption in supply Chain
Sachin S. Kamble,
Angappa Gunasekaran,
Vikas Kumar,
Amine Belhadi and
Cyril Foropon
Technological Forecasting and Social Change, 2021, vol. 163, issue C
Abstract:
The purpose of this paper is to provide a decision support system for managers to predict an organization's probability of successful blockchain adoption using a machine learning technique. The study conceptualizes blockchain technology as a dynamic capability that should be possessed by the organization to remain competitive. The factors influencing the blockchain adoption behavior were modeled using the theoretical lens of the Technology Acceptance Model and Technology-organisation-Environment framework. The findings identify competitor pressure, partner readiness, perceived usefulness, and perceived ease of use as the most influencing factors for blockchain adoption. A predictive decision support system was developed using a Bayesian network analysis featuring the significant factors that can be used by the decision-makers for predicting the probability of blockchain adoption in their organization. The prior probability values reported in the study may be used as indicators by the practitioners to predict their blockchain adoption probability. The practitioner will be required to substitute these probability values (high or low), as applicable to their organization to estimate the adoption probability. The use of the decision support system is likely to help the decision-makers to assess their adoption probability and develop future adoption strategies.
Keywords: Blockchain; Machine learning; Bayesian network; TAM; TOE; Predictive analytics (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040162520312919
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:tefoso:v:163:y:2021:i:c:s0040162520312919
DOI: 10.1016/j.techfore.2020.120465
Access Statistics for this article
Technological Forecasting and Social Change is currently edited by Fred Phillips
More articles in Technological Forecasting and Social Change from Elsevier
Bibliographic data for series maintained by Catherine Liu ().