Curvature-based feature selection with application in classifying electronic health records
Zheming Zuo,
Jie Li,
Han Xu and
Noura Al Moubayed
Technological Forecasting and Social Change, 2021, vol. 173, issue C
Abstract:
Disruptive technologies provides unparalleled opportunities to contribute to the identifications of many aspects in pervasive healthcare, from the adoption of the Internet of Things through to Machine Learning (ML) techniques. As a powerful tool, ML has been widely applied in patient-centric healthcare solutions. To further improve the quality of patient care, Electronic Health Records (EHRs) are commonly adopted in healthcare facilities for analysis. It is a crucial task to apply AI and ML to analyse those EHRs for prediction and diagnostics due to their highly unstructured, unbalanced, incomplete, and high-dimensional nature. Dimensionality reduction is a common data preprocessing technique to cope with high-dimensional EHR data, which aims to reduce the number of features of EHR representation while improving the performance of the subsequent data analysis, e.g. classification. In this work, an efficient filter-based feature selection method, namely Curvature-based Feature Selection (CFS), is presented. The proposed CFS applied the concept of Menger Curvature to rank the weights of all features in the given data set. The performance of the proposed CFS has been evaluated in four well-known EHR data sets, including Cervical Cancer Risk Factors (CCRFDS), Breast Cancer Coimbra (BCCDS), Breast Tissue (BTDS), and Diabetic Retinopathy Debrecen (DRDDS). The experimental results show that the proposed CFS achieved state-of-the-art performance on the above data sets against conventional PCA and other most recent approaches. The source code of the proposed approach is publicly available at https://github.com/zhemingzuo/CFS.
Keywords: Feature selection; Precision medicine; Healthcare; Electronic health records; Classification (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040162521005606
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:tefoso:v:173:y:2021:i:c:s0040162521005606
DOI: 10.1016/j.techfore.2021.121127
Access Statistics for this article
Technological Forecasting and Social Change is currently edited by Fred Phillips
More articles in Technological Forecasting and Social Change from Elsevier
Bibliographic data for series maintained by Catherine Liu ().