U. S. energy production activity and innovation
Michael C. Connelly and
J.A. Sekhar
Technological Forecasting and Social Change, 2012, vol. 79, issue 1, 30-46
Abstract:
Life-cycle studies provide a comprehensive insight into comparative innovation behavior and innovation constants. In this article a comparison of the life-cycle plots for the production and patent activity is made for US energy production categories. As has been shown previously for material production [TFSC, vol.78, 2011], the two activities may be correlated to such an extent that they may be superimposed to a large degree, for all growth stage except stage IV, simply by an origin-shift. Over ten energy production methods have been studied in this manner for the first time. An origin-shift ratio, OR, (positive or negative lag) describes the amount required to shift the two activity curves in order to superimpose them. The relative drive-force ratio, DR (defined as the ratio of the production and patent growth constants) is noted to scale with the origin-shift. The value of this drive-force ratio determines the amount of production that is influenced by patents. The slope of curve of the drive-force ratio plotted against the origin-shift ratio is noted to be constant across all energy categories in the high growth Stage III. The authors find for the first time that even early stage production displays an origin-shift. Energy materials (i.e., those materials that dominate a particular type of energy production) are also studied in the material category alone, where the total usage of the material is considered. The concept of Green materials is discussed in this context. The life-cycle approach collapses the energy categories/sources and related materials into two groups. The authors discuss these groups in the Schumpeterian framework of constructive and destructive innovation. Group 1, containing coal, natural gas, wind, renewable, fossil fuel, solar and total energies, is composed of energy categories/sources whose patent activity could be inferred as driving their production. On the other hand, energy production from biomass, biofuel, geothermal and nuclear energies is identified in Group 2, in which the patent activity is driven by production (high innovation group). An (OR) of slightly less than one and a (DR) less than one, lead to a placement where with time, a constructive to destructive innovation transition is encountered A very low (OR) and a low (DR) on the other hand leads to a transition from Stage III growth to a no-growth (Stage IV) with time. Innovation enhanced resources and production are also discussed.
Keywords: Innovation; Energy; Materials; Life-cycle; Patent; Production; Stage III (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040162511001016
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:tefoso:v:79:y:2012:i:1:p:30-46
DOI: 10.1016/j.techfore.2011.05.001
Access Statistics for this article
Technological Forecasting and Social Change is currently edited by Fred Phillips
More articles in Technological Forecasting and Social Change from Elsevier
Bibliographic data for series maintained by Catherine Liu ().