EconPapers    
Economics at your fingertips  
 

The Patterson-Price-Reich's rule of population structure analysis from genetic marker data

Jinliang Wang

Theoretical Population Biology, 2025, vol. 163, issue C, 13-23

Abstract: Delineating population structure from the marker genotypes of a sample of individuals is now routinely conducted in the fields of molecular ecology, evolution and conservation biology. Various Bayesian and likelihood methods as well as more general statistical methods (e.g. PCA) have been proposed to detect population structure, to assign sampled individuals to discrete clusters (subpopulations), and to estimate the admixture proportions of each sampled individual. Regardless of the methods, the power of a structure analysis depends on the strength of population structure (measured by FST) relative to the amount of marker information (measured by NL, where N and L are the numbers of sampled individuals and loci respectively). Patterson, Price and Reich (2006) proposed that population structure is unidentifiable when data size D = NL is smaller than 1/FST2 and quickly becomes identifiable easily with an increasing D or FST when D>1/FST2. In this study, I investigated this phase change PPR rule by analysing both simulated genomic data and empirical data by four likelihood admixture analysis methods. The results show that the PPR rule is largely valid, but the accuracy of a structure analysis is also affected by the number of subpopulations K. A more complicated population structure with a larger K requires a larger NLFST2 to resolve accurately. For a given NLFST2 above the PPR threshold value of 1, increasing L and decreasing N is advantageous over increasing N and decreasing L in improving admixture estimation accuracy.

Keywords: Structure; Admixture, Hybridization, Markers, Clustering (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040580925000188
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:thpobi:v:163:y:2025:i:c:p:13-23

DOI: 10.1016/j.tpb.2025.03.001

Access Statistics for this article

Theoretical Population Biology is currently edited by Jeremy Van Cleve

More articles in Theoretical Population Biology from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-05-20
Handle: RePEc:eee:thpobi:v:163:y:2025:i:c:p:13-23