Evolutionary jumping and breakthrough in tree masting evolution
Yuuya Tachiki and
Yoh Iwasa
Theoretical Population Biology, 2012, vol. 81, issue 1, 20-31
Abstract:
Many long-lived plants such as trees show masting or intermittent and synchronized reproduction. In a coupled chaos system describing the dynamics of individual-plant resource budgets, masting occurs when the resource depletion coefficient k (ratio of the reproductive expenditure to the excess resource reserve) is large. Here, we mathematically studied the condition for masting evolution. In an infinitely large population, we obtained a deterministic dynamical system, to which we applied the pairwise invasibility plot and convergence stability of evolutionary singularity analyses. We prove that plants reproducing at the same rate every year are not evolutionarily stable. The resource depletion coefficient k increases, and the system oscillates with a period of 2 years (high and low reproduction) if k<1. Alternatively, k may evolve further and jump to a value >1, resulting in the sudden start of intermittent reproduction. We confirm that a high survivorship of young plants (seedlings) in the light-limited understory favors masting evolution, as previously suggested by computer simulations and field observations. The stochasticity caused by the finiteness of population size also promotes masting evolution.
Keywords: Mast seeding; Seedling survivorship; Evolutionary game theory; Finite population; Pairwise invasibility plot (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0040580911000906
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:thpobi:v:81:y:2012:i:1:p:20-31
DOI: 10.1016/j.tpb.2011.10.004
Access Statistics for this article
Theoretical Population Biology is currently edited by Jeremy Van Cleve
More articles in Theoretical Population Biology from Elsevier
Bibliographic data for series maintained by Catherine Liu ().