Continuous equilibrium network design models
Mustafa Abdulaal and
Larry J. LeBlanc
Transportation Research Part B: Methodological, 1979, vol. 13, issue 1, 19-32
Abstract:
It is known that the network design problem with the assumption of user optimal flows can be modeled as a 0-1 mixed integer programming problem. Instead, we formulate the network design problem with continuous investment variables subject to equilibrium assignment as a nonlinear optimization problem. We show that this optimization problem is equivalent to an unconstrained problem which we solve by direct search techniques. For convex investment cost functions, the performance of both Powell's method and the method of Hooke and Jeeves is approximately the same with respect to computational requirements for a 24 node, 76 arc network. For the case of concave investment functions, Hooke and Jeeves was superior. The solution to the concave continuous model was very similar to that of the 0-1 model. Furthermore, the required solution time was far less than that required by the corresponding discrete model of the same network. The advantages and disadvantages of the continuous approach as well as the computational requirements are discussed.
Date: 1979
References: Add references at CitEc
Citations: View citations in EconPapers (57)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0191-2615(79)90004-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:13:y:1979:i:1:p:19-32
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().