EconPapers    
Economics at your fingertips  
 

Trade-off between safety, mobility and stability in automated vehicle following control: An analytical method

Xiaopeng Li

Transportation Research Part B: Methodological, 2022, vol. 166, issue C, 1-18

Abstract: A recent empirical study (Shi and Li, 2021) showed that commercial automated vehicles (AVs) became more unstable as the headway was set to a smaller value, implying possible intrinsic tradeoffs between safety, mobility, and stability aspects in AV following control design. This study aims to analytically explain the underlying vehicle control mechanism that dictates these tradeoffs. To this end, a robust optimization model is formulated based upon a parsimonious linear AV following model to capture the first-order tradeoffs between safety, mobility, and stability. The robust optimization model aims to maintain a sufficient safety buffer to avoid collisions against all possible realistic preceding vehicle trajectories. As opposed to a numerical solution, we managed to solve this model to an analytical solution that captures relationships between the key parameters determining safety, mobility, and stability. The analytical solution reveals that improving AV mobility (or reducing AV following headway) would require overcoming more safety challenges (e.g., enhancing vehicle control to maintain a short safety buffer) while causing more string-instability. The theoretical findings are consistent with the empirical observations in previous studies. Further, they provide a possible explanation for the observed string instability of commercial AV following control (e.g., adaptive cruise control) as a tradeoff for a smaller headway. Overall, this study lays a new methodology foundation for incorporating safety in traffic flow analysis that traditionally focused on only mobility and stability. Further, the findings yield a set of managerial insights into reasonable AV following design and its implications to emerging AV traffic management.

Keywords: Automated vehicles; Adaptive cruise control; Car following; Safety; Mobility; Stability; Analytical method; Connected vehicles (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261522001461
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:166:y:2022:i:c:p:1-18

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.trb.2022.09.003

Access Statistics for this article

Transportation Research Part B: Methodological is currently edited by Fred Mannering

More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-04-22
Handle: RePEc:eee:transb:v:166:y:2022:i:c:p:1-18