Braess' paradox: Some new insights
Eric I. Pas and
Shari L. Principio
Transportation Research Part B: Methodological, 1997, vol. 31, issue 3, 265-276
Abstract:
This paper examines some properties of the well-known Braess' paradox of traffic flow, in the context of the classical network configuration used by Braess. The paper shows that whether Braess' paradox does or does not occur depends on the conditions of the problem; namely, the link congestion function parameters and the demand for travel. In particular, this paper shows that for a given network with a given set of link congestion functions, Braess' paradox occurs only if the total demand for travel falls within a certain intermediate range of values (the bounds of which are dependent on the link congestion function parameters). The paper also shows that, depending on the problem parameters, adding a new link might not lead to a reduction in total system travel time, even if users are charged the marginal cost of traveling. On the other hand, there are ranges of values for the problem parameters for which the new link reduces total system travel time, as long as marginal cost pricing is implemented.
Date: 1997
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (40)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191-2615(96)00024-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:31:y:1997:i:3:p:265-276
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().