EconPapers    
Economics at your fingertips  
 

A simulation evaluation of the maximum approximate composite marginal likelihood (MACML) estimator for mixed multinomial probit models

Chandra R. Bhat and Raghuprasad Sidharthan

Transportation Research Part B: Methodological, 2011, vol. 45, issue 7, 940-953

Abstract: This paper evaluates the ability of the maximum approximate composite marginal likelihood (MACML) estimation approach to recover parameters from finite samples in mixed cross-sectional and panel multinomial probit models. Comparisons with the maximum simulated likelihood (MSL) estimation approach are also undertaken. The results indicate that the MACML approach recovers parameters much more accurately than the MSL approach in all model structures and covariance specifications. The MACML inference approach also estimates the parameters efficiently, with the asymptotic standard errors being, in general, only a small proportion of the true values. As importantly, the MACML inference approach takes only a very small fraction of the time needed for MSL estimation. In particular, the results suggest that, for the case of five random coefficients, the MACML approach is about 50 times faster than the MSL for the cross-sectional random coefficients case, about 15 times faster than the MSL for the panel inter-individual random coefficients case, and about 350 times or more faster than the MSL for the panel intra- and inter-individual random coefficients case. As the number of alternatives in the unordered-response model increases, one can expect even higher computational efficiency factors for the MACML over the MSL approach. Further, as should be evident in the panel intra- and inter-individual random coefficients case, the MSL is all but practically infeasible when the mixing structure leads to an explosion in the dimensionality of integration in the likelihood function, but these situations are handled with ease in the MACML approach. It is hoped that the MACML procedure will spawn empirical research into rich model specifications within the context of unordered multinomial choice modeling, including autoregressive random coefficients, dynamics in coefficients, space-time effects, and spatial/social interactions.

Keywords: Mixed; multinomial; probit; Composite; marginal; likelihood; Maximum; simulated; likelihood; Discrete; choice; models; Unordered-response; models; Panel; data (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261511000506
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:45:y:2011:i:7:p:940-953

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Transportation Research Part B: Methodological is currently edited by Fred Mannering

More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:transb:v:45:y:2011:i:7:p:940-953