The Hamilton–Jacobi partial differential equation and the three representations of traffic flow
Jorge A. Laval and
Ludovic Leclercq
Transportation Research Part B: Methodological, 2013, vol. 52, issue C, 17-30
Abstract:
This paper applies the theory of Hamilton–Jacobi partial differential equations to the case of first-order traffic flow models. The traffic flow surface is analyzed with respect to the three 2-dimensional coordinate systems arising in the space of vehicle number, time and distance. In each case, the solution to the initial and boundary value problems are presented. Explicit solution methods and examples are shown for the triangular flow-density diagram case. This unveils new models and shows how a number of existing models are cast as special cases.
Keywords: Hamilton–Jacobi partial differential equation; Stochastic traffic flow; Kinematic wave model (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261513000349
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:52:y:2013:i:c:p:17-30
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.trb.2013.02.008
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().