Systematic bias in transport model calibration arising from the variability of linear data projection
Wai Wong and
S.C. Wong
Transportation Research Part B: Methodological, 2015, vol. 75, issue C, 1-18
Abstract:
In transportation and traffic planning studies, accurate traffic data are required for reliable model calibration to accurately predict transportation system performance and ensure better traffic planning. However, it is impractical to gather data from an entire population for such estimations because the widely used loop detectors and other more advanced wireless sensors may be limited by various factors. Thus, making data inferences based on smaller populations is generally inevitable. Linear data projection is a commonly and intuitively adopted method for inferring population traffic characteristics. It projects a sample of observable traffic quantities such as traffic count based on a set of scaling factors. However, scaling factors are subject to different types of variability such as spatial variability. Models calibrated based on linearly projected data that do not account for variability may introduce a systematic bias into their parameters. Such a bias is surprisingly often ignored. This paper reveals the existence of a systematic bias in model calibration caused by variability in the linear data projection. A generalized multivariate polynomial model is applied to examine the effect of this variability on model parameters. Adjustment factors are derived and methods are proposed for detecting and removing the embedded systematic bias. A simulation is used to demonstrate the effectiveness of the proposed method. To illustrate the applicability of the method, case studies are conducted using real-world global positioning system data obtained from taxis. These data calibrate the Macroscopic Bureau of Public Road function for six 1×1km regions in Hong Kong.
Keywords: Systematic bias; Model calibration; Linear data projection; Macroscopic Bureau of Public Road; GPS (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261515000247
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:75:y:2015:i:c:p:1-18
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.trb.2015.02.004
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().