EconPapers    
Economics at your fingertips  
 

Coordinated online in-vehicle routing balancing user optimality and system optimality through information perturbation

Lili Du, Lanshan Han and Shuwei Chen

Transportation Research Part B: Methodological, 2015, vol. 79, issue C, 121-133

Abstract: The inconsistence between system optimality and user optimality represents one of the key difficulties on network traffic congestion control. The advanced connected vehicle systems, enabling smart vehicles to possess/exchange real-time information and conduct portable computation, provide new opportunities to address this challenge. Motivated by this view, this study proposes a coordinated online in-vehicle routing mechanism with intentional information provision perturbation (CRM-IP), which seeks to shape individual vehicles online routing decisions so that user optimality and system optimality are balanced, by exploiting bounded rationality of the users. The proposed CRM-IP is modeled as a pure strategy atomic routing game, and implemented by a sequentially updating distributed algorithm. The mathematical analysis is conducted to quantify the absolute gain of system optimality corresponding to the loss of user optimality resulting from a given level of the information perturbation in the worst case so that the efficiency of the information perturbation can be evaluated. Furthermore, numerical experiments conducted based on City of Sioux Falls network investigate the average effects of the CRM-IP on system optimality and user optimality under various network traffic conditions, comparing to the CRM developed by Du et al. (in press). The results indicate that the improvement of system optimality and the reduction of individual vehicles’ travel time from the CRM is more significant when the network traffic is under an mild congestion state, such as under the levels of service (LOS’s) C, D, and E, rather than under extremely sparse or congested states, such as under LOS’s A and B, or F. Moreover, higher level of information perturbation benefits system optimality more, but the marginal effect decreases after the perturbation reaching certain level, such as λ=0.1 in this case study. In addition, a portion of vehicles may sacrifice user optimality due to the information perturbation, but the extent of the sacrifice is not significant, even though it increases with the information perturbation level. Hence, a small information perturbation is recommended to achieve an efficient network traffic control through the CRM-IP. Overall, this study proposes the CRM-IP as an efficient routing mechanism, which has a great potential to guide the routing decisions of individual vehicles so that their collective behavior improve network performance in both system optimality and user optimality.

Keywords: Coordinated in-vehicle routing; Information perturbation; Routing game; Distributed algorithms (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261515001241
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:79:y:2015:i:c:p:121-133

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.trb.2015.05.020

Access Statistics for this article

Transportation Research Part B: Methodological is currently edited by Fred Mannering

More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:transb:v:79:y:2015:i:c:p:121-133