Unified closed-form expression of logit and weibit and its extension to a transportation network equilibrium assignment
Shoichiro Nakayama and
Makoto Chikaraishi
Transportation Research Part B: Methodological, 2015, vol. 81, issue P3, 672-685
Abstract:
This study proposes a generalized multinomial logit model that allows heteroscedastic variance and flexible utility function shape. The novelty of our approach is that the model is theoretically derived by applying a generalized extreme-value distribution to the random component of utility, while retaining its closed-form expression. In addition, the weibit model, in which the random utility is assumed to follow the Weibull distribution, is a special case of the proposed model. This is achieved by utilizing the q-generalization method developed in Tsallis statistics. Then, our generalized logit model is incorporated into a transportation network equilibrium model. The network equilibrium model with a generalized logit route choice is formulated as an optimization problem for uncongested networks. The objective function includes Tsallis entropy, a type of generalized entropy. The generalization of the Gumbel and Weibull distributions, logit and weibit models, and network equilibrium model are formulated within a unified framework with q-generalization or Tsallis statistics.
Keywords: Closed-form expression; Logit; Weibit; Tsallis entropy; Transportation network equilibrium assignment (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261515001666
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:81:y:2015:i:p3:p:672-685
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.trb.2015.07.019
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().