Collaborative truck scheduling and appointments for trucking companies and container terminals
Mai-Ha Phan and
Kap Hwan Kim
Transportation Research Part B: Methodological, 2016, vol. 86, issue C, 37-50
Abstract:
Appointment systems for truck arrivals at container terminals have been applied in many ports to reduce truck congestion. This study suggests a new appointment process by which trucking companies and terminals collaboratively determine truck operation schedules and truck arrival appointments. This study formulates a mathematical model involving a sub-problem for each trucking company to determine the optimal dispatching schedules for trucks and the other sub-problem for the terminal to estimate the expected truck system time in each time interval. An iterative collaboration process is proposed based on a decomposed mathematical formulation. Numerical experiments are conducted to investigate the performance of the decision process and the robustness of the process in practical operation conditions.
Keywords: Truck appointment system; Truck scheduling; Container terminal; Mathematical programming (search for similar items in EconPapers)
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (30)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261516000151
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:86:y:2016:i:c:p:37-50
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.trb.2016.01.006
Access Statistics for this article
Transportation Research Part B: Methodological is currently edited by Fred Mannering
More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().