EconPapers    
Economics at your fingertips  
 

Traffic state estimation through compressed sensing and Markov random field

Zuduo Zheng and Dongcai Su

Transportation Research Part B: Methodological, 2016, vol. 91, issue C, 525-554

Abstract: This study focuses on information recovery from noisy traffic data and traffic state estimation. The main contributions of this paper are: i) a novel algorithm based on the compressed sensing theory is developed to recover traffic data with Gaussian measurement noise, partial data missing, and corrupted noise; ii) the accuracy of traffic state estimation (TSE) is improved by using Markov random field and total variation (TV) regularization, with introduction of smoothness prior; and iii) a recent TSE method is extended to handle traffic state variables with high dimension. Numerical experiments and field data are used to test performances of these proposed methods; consistent and satisfactory results are obtained.

Keywords: Traffic state estimation; Data noise; Compressed sensing; Compressive sensing; Markov random field; Cell transmission model; Total variation regularization (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0191261516303939
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:transb:v:91:y:2016:i:c:p:525-554

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.trb.2016.06.009

Access Statistics for this article

Transportation Research Part B: Methodological is currently edited by Fred Mannering

More articles in Transportation Research Part B: Methodological from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:transb:v:91:y:2016:i:c:p:525-554