Optimization of delay time and environmental pollution in scheduling of production and transportation system: a novel multi-society genetic algorithm approach
Mostafa Moghimi and
Mohammad Ali Beheshtinia
Management Research Review, 2021, vol. 44, issue 10, 1427-1453
Abstract:
Purpose - The purpose of this study is to investigate the optimization of the scheduling of production and transportation systems while considering delay time (DT) and environmental pollution (EP) concurrently. To this, an integrated multi-site manufacturing process using a cumulative transportation system is investigated. Additionally, a novel multi-society genetic algorithm is developed to reach the best answers. Design/methodology/approach - A bi-objective model is proposed to optimize the production and transportation process with the objectives of minimizing DT and EP. This is solved by a social dynamic genetic algorithm (SDGA), which is a novel multi-society genetic algorithm, in scenarios of equal and unequal impacts of each objective. The impacts of each objective are calculated by the analytical hierarchical process (AHP) using experts’ opinions. Results are compared by dynamic genetic algorithm and optimum solution results. Findings - Results clearly depict the efficiency of the proposed algorithm and model in the scheduling of production and transportation systems with the objectives of minimizing DT and EP concurrently. Although SDGA’s performance is acceptable in all cases, in comparison to other genetic algorithms, it needs more process time which is the cost of reaching better answers. Additionally, SDGA had better performance in variable weights of objectives in comparison to itself and other genetic algorithms. Research limitations/implications - This research is an improvement which allows both society and industry to elevate the levels of their satisfaction while their social responsibilities have been glorified through assuaging the concerns of customers on distribution networks’ emission, competing more efficient and effective in the global market and having the ability to make deliberate decisions far from bias. Additionally, implications of the developed genetic algorithm help directly to the organizations engaged with intelligent production and/or transportation planning which society will be merited indirectly from their outcomes. It also could be utilitarian for organizations that are engaged with small, medium and big data analysis in their processes and want to use more effective and more efficient tools. Originality/value - Optimization of EP and DT are considered simultaneously in both model and algorithm in this study. Besides, a novel genetic algorithm, SDGA, is proposed. In this multi-society algorithm, each society is focused on a particular objective; however, in one society all the feasible answers will have been integrated and optimization will have been continued.
Keywords: Distribution management; Optimization; Social dynamic genetic algorithm; Environmental pollution; Delay time; Scheduling; Production and operations management (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.emerald.com/insight/content/doi/10.110 ... d&utm_campaign=repec (text/html)
https://www.emerald.com/insight/content/doi/10.110 ... d&utm_campaign=repec (application/pdf)
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eme:mrrpps:mrr-04-2020-0203
DOI: 10.1108/MRR-04-2020-0203
Access Statistics for this article
Management Research Review is currently edited by Dr Jay Janney and Prof Lerong He
More articles in Management Research Review from Emerald Group Publishing Limited
Bibliographic data for series maintained by Emerald Support ().