EconPapers    
Economics at your fingertips  
 

Multidimensional unit- and subgroup-consistent inequality and poverty measures: some characterizations

Henar Díez, Ma Casilda Lasso de la Vega and Ana Urrutia

A chapter in Inequality and Opportunity: Papers from the Second ECINEQ Society Meeting, 2008, pp 189-211 from Emerald Group Publishing Limited

Abstract: Purpose: Most of the characterizations of inequality or poverty indices assume some invariance condition, be that scale, translation, or intermediate, which imposes value judgments on the measurement. In the unidimensional approach, Zheng (2007a, 2007b) suggests replacing all these properties with the unit-consistency axiom, which requires that the inequality or poverty rankings, rather than their cardinal values, are not altered when income is measured in different monetary units. The aim of this paper is to introduce a multidimensional generalization of this axiom and characterize classes of multidimensional inequality and poverty measures that are unit consistent. Design/methodology/approach: Zheng (2007a, 2007b) characterizes families of inequality and poverty measures that fulfil the unit-consistency axiom. Tsui (1999, 2002), in turn, derives families of the multidimensional relative inequality and poverty measures. Both of these contributions are the background taken to achieve our characterization results. Findings: This paper merges these two generalizations to identify the canonical forms of all the multidimensional subgroup- and unit-consistent inequality and poverty measures. The inequality families we derive are generalizations of both the Zheng and Tsui inequality families. The poverty indices presented are generalizations of Tsui's relative poverty families as well as the families identified by Zheng. Originality/value: The inequality and poverty families characterized in this paper are unit and subgroup consistent, both of them being appropriate requirements in empirical applications in which inequality or poverty in a population split into groups is measured. Then, in empirical applications, it makes sense to choose measures from the families we derive.

Date: 2008
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.emerald.com/insight/content/doi/10.101 ... d&utm_campaign=repec (text/html)
https://www.emerald.com/insight/content/doi/10.101 ... d&utm_campaign=repec (application/pdf)
https://www.emerald.com/insight/content/doi/10.101 ... 1049-2585(08)16009-4
Access to full text is restricted to subscribers

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eme:reinzz:s1049-2585(08)16009-4

DOI: 10.1016/S1049-2585(08)16009-4

Access Statistics for this chapter

More chapters in Research on Economic Inequality from Emerald Group Publishing Limited
Bibliographic data for series maintained by Emerald Support ().

 
Page updated 2025-04-15
Handle: RePEc:eme:reinzz:s1049-2585(08)16009-4