Improved Field Obstacle Detection Algorithm Based on YOLOv8
Xinying Zhou,
Wenming Chen and
Xinhua Wei ()
Additional contact information
Xinying Zhou: School of Computer Science and Technology, Xinjiang University, Urumqi 830017, China
Wenming Chen: School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
Xinhua Wei: School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
Agriculture, 2024, vol. 14, issue 12, 1-26
Abstract:
To satisfy the obstacle avoidance requirements of unmanned agricultural machinery during autonomous operation and address the challenge of rapid obstacle detection in complex field environments, an improved field obstacle detection model based on YOLOv8 was proposed. This model enabled the fast detection and recognition of obstacles such as people, tractors, and electric power pylons in the field. This detection model was built upon the YOLOv8 architecture with three main improvements. First, to adapt to different tasks and complex environments in the field, improve the sensitivity of the detector to various target sizes and positions, and enhance detection accuracy, the CBAM (Convolutional Block Attention Module) was integrated into the backbone layer of the benchmark model. Secondly, a BiFPN (Bi-directional Feature Pyramid Network) architecture took the place of the original PANet to enhance the fusion of features across multiple scales, thereby increasing the model’s capacity to distinguish between the background and obstacles. Third, WIoU v3 (Wise Intersection over Union v3) optimized the target boundary loss function, assigning greater focus to medium-quality anchor boxes and enhancing the detector’s overall performance. A dataset comprising 5963 images of people, electric power pylons, telegraph poles, tractors, and harvesters in a farmland environment was constructed. The training set comprised 4771 images, while the validation and test sets each consisted of 596 images. The results from the experiments indicated that the enhanced model attained precision, recall, and average precision scores of 85.5%, 75.1%, and 82.5%, respectively, on the custom dataset. This reflected increases of 1.3, 1.2, and 1.9 percentage points when compared to the baseline YOLOv8 model. Furthermore, the model reached 52 detection frames per second, thereby significantly enhancing the detection performance for common obstacles in the field. The model enhanced by the previously mentioned techniques guarantees a high level of detection accuracy while meeting the criteria for real-time obstacle identification in unmanned agricultural equipment during fieldwork.
Keywords: field obstacle detection; YOLOv8; CBAM; BiFPN; WIoU v3 (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2077-0472/14/12/2263/pdf (application/pdf)
https://www.mdpi.com/2077-0472/14/12/2263/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:14:y:2024:i:12:p:2263-:d:1540936
Access Statistics for this article
Agriculture is currently edited by Ms. Leda Xuan
More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().