Open Remote Sensing Data in Digital Soil Organic Carbon Mapping: A Review
Dorijan Radočaj (),
Mateo Gašparović and
Mladen Jurišić
Additional contact information
Dorijan Radočaj: Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
Mateo Gašparović: Faculty of Geodesy, University of Zagreb, Kačićeva 26, 10000 Zagreb, Croatia
Mladen Jurišić: Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
Agriculture, 2024, vol. 14, issue 7, 1-18
Abstract:
This review focuses on digital soil organic carbon (SOC) mapping at regional or national scales in spatial resolutions up to 1 km using open data remote sensing sources, emphasizing its importance in achieving United Nations’ Sustainable Development Goals (SDGs) related to hunger, climate action, and land conservation. The literature review was performed according to scientific studies indexed in the Web of Science Core Collection database since 2000. The analysis reveals a steady rise in total digital soil mapping studies since 2000, with digital SOC mapping studies accounting for over 20% of these studies in 2023, among which SDGs 2 (Zero Hunger) and 13 (Climate Action) were the most represented. Notably, countries like the United States, China, Germany, and Iran lead in digital SOC mapping research. The shift towards machine and deep learning methods in digital SOC mapping has surged post-2010, necessitating environmental covariates like topography, climate, and spectral data, which are cornerstones of machine and deep learning prediction methods. It was noted that the available climate data primarily restrict the spatial resolution of digital SOC mapping to 1 km, which typically requires downscaling to harmonize with topography (up to 30 m) and multispectral data (up to 10–30 m). Future directions include the integration of diverse remote sensing data sources, the development of advanced algorithms leveraging machine learning, and the utilization of high-resolution remote sensing for more precise SOC mapping.
Keywords: digital soil mapping; spectral indices; environmental covariates; sustainable development goals; machine learning; topography; climate; multispectral (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/2077-0472/14/7/1005/pdf (application/pdf)
https://www.mdpi.com/2077-0472/14/7/1005/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:14:y:2024:i:7:p:1005-:d:1422750
Access Statistics for this article
Agriculture is currently edited by Ms. Leda Xuan
More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().