EconPapers    
Economics at your fingertips  
 

Spatial Analysis of Soil Acidity and Available Phosphorus in Coffee-Growing Areas of Pichanaqui: Implications for Liming and Site-Specific Fertilization

Kenyi Quispe, Nilton Hermoza, Sharon Mejia, Lorena Estefani Romero-Chavez, Elvis Ottos, Andrés Arce and Richard Solórzano Acosta ()
Additional contact information
Kenyi Quispe: Dirección de Supervisión de Servicios Estratégicos Agrarios, en las Estaciones Experimentales Agrarias, Instituto Nacional de Innovación Agraria (INIA), Av. La Molina 1981, Lima 15024, Peru
Nilton Hermoza: Dirección de Supervisión de Servicios Estratégicos Agrarios, en las Estaciones Experimentales Agrarias, Instituto Nacional de Innovación Agraria (INIA), Av. La Molina 1981, Lima 15024, Peru
Sharon Mejia: Dirección de Supervisión de Servicios Estratégicos Agrarios, en las Estaciones Experimentales Agrarias, Instituto Nacional de Innovación Agraria (INIA), Av. La Molina 1981, Lima 15024, Peru
Lorena Estefani Romero-Chavez: Dirección de Supervisión de Servicios Estratégicos Agrarios, en las Estaciones Experimentales Agrarias—INIA, Av. Marginal Km 74, Pichanaqui 12865, Peru
Elvis Ottos: Dirección de Supervisión de Servicios Estratégicos Agrarios, en las Estaciones Experimentales Agrarias—INIA, Av. Marginal Km 74, Pichanaqui 12865, Peru
Andrés Arce: Jefatura Técnica de Nutrición Vegetal, Gerencia de Desarrollo, Grupo Silvestre, Lima 15067, Peru
Richard Solórzano Acosta: Facultad de Ciencias Ambientales, Universidad Científica del Sur (UCSUR), Lima 15067, Peru

Agriculture, 2025, vol. 15, issue 15, 1-28

Abstract: Soil acidity is one of the main limiting factors for coffee production in Peruvian rainforests. The objective of this study is to predict the spatial acidity variability for recommending site-specific liming and phosphorus fertilization treatments. We analyzed thirty-six edaphoclimatic variables, eight methods for estimating liming doses, and three geospatial variables from 552 soil samples in the Pichanaqui district of Peru. Multivariate statistics, nonparametric comparison, and geostatistical analysis with Ordinary Kriging interpolation were used for data analysis. The results showed low coffee yields (0.70 ± 0.16 t ha −1 ) due to soil acidification. The interquartile ranges (IQR) were found to be 3.80–5.10 for pH, 0.21–0.87 cmol Kg −1 for Al +3 , and 2.55–6.53 mg Kg −1 for available P, which are limiting soil conditions for coffee plantations. Moreover, pH, Al +3 , Ca +2 , and organic matter (OM) were the variables with the highest accuracy and quality in the spatial prediction of soil acidity (R 2 between 0.77 and 0.85). The estimation method of liming requirements, MPM (integration of pH and organic material method), obtained the highest correlation with soil acidity-modulating variables and had a high spatial predictability (R 2 = 0.79), estimating doses between 1.50 and 3.01 t ha −1 in soils with organic matter (OM) > 4.00%. The MAC (potential acidity method) method (R 2 = 0.59) estimated liming doses between 0.51 and 0.88 t ha −1 in soils with OM < 4.00% and potential acidity greater than 0.71 cmol Kg −1 . Regarding phosphorus fertilization (DAP), the results showed high requirements (median = 137.21 kg ha −1 , IQR = 8.28 kg ha −1 ), with high spatial predictability (R 2 = 0.74). However, coffee plantations on Ferralsols, with Paleogene parental material, mainly in dry forests, had the lowest predicted fertilization requirements (between 6.92 and 77.55 kg ha −1 of DAP). This research shows a moderate spatial variation of acidity, the need to optimize phosphorus fertilization, and an optimal prediction of liming requirements using the MPM and MAC methods, which indicate high requirements in the southwest of the Pichanaqui district.

Keywords: site-specific nutrient management; acid soil remediation; tropical agroecosystems; soil pH variability; geostatistical mapping (search for similar items in EconPapers)
JEL-codes: Q1 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/2077-0472/15/15/1632/pdf (application/pdf)
https://www.mdpi.com/2077-0472/15/15/1632/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jagris:v:15:y:2025:i:15:p:1632-:d:1711673

Access Statistics for this article

Agriculture is currently edited by Ms. Leda Xuan

More articles in Agriculture from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-07-29
Handle: RePEc:gam:jagris:v:15:y:2025:i:15:p:1632-:d:1711673