Environmental Risk Mitigation by Biodiesel Blending from Eichhornia crassipes: Performance and Emission Assessment
Hasanain A. Abdul Wahhab and
Hussain Al-Kayiem
Additional contact information
Hasanain A. Abdul Wahhab: Mechanical Engineering Department, University of Technology, Baghdad 10081, Iraq
Sustainability, 2021, vol. 13, issue 15, 1-16
Abstract:
The aggressive growth of Eichhornia crassipes (Water Hyacinth) plants causes severe damage to the irrigation, environment, and waterway systems in Iraq. This study aims to produce, characterize, and test biofuel extracted from the Eichhornia crassipes plant in Iraq. The extracted biodiesel was mixed at 10%, 20%, and 40% with neat diesel to produce three biodiesel samples. The methodology consists of the physiochemical properties of the samples that were characterized. The performance of the IC engine fueled by neat and biodiesel samples was measured under various operational conditions. The exhaust gases were analyzed to estimate the compounds to assess the environmental impact. The results showed that the density and viscosity of mixtures increase and the calorific value decrease with biodiesel. The engine test showed that the diesel + 10BE, diesel + 20BE, and diesel + 40BE enhanced brake thermal efficiency using 2.6%, 4.2%, and 6.3%, respectively, compared to neat diesel. Exhaust tests show a slight reduction, of 0.85–3.69% and 2.48–6.93%, in CO and HC emission, respectively. NOx is higher by 1.87–7.83% compared with neat diesel. The results revealed that biodiesel blended from Eichhornia crassipes is a viable solution to mitigate the drastic impact on the environment and economy in Iraq. The blended biodiesel has good potential to be mixed with the locally produced diesel from oil refineries.
Keywords: biofuel; Eichhornia crassipes; emission of biodiesel; fuel technology; water hyacinth plant; waste to wealth (search for similar items in EconPapers)
JEL-codes: O13 Q Q0 Q2 Q3 Q5 Q56 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/2071-1050/13/15/8274/pdf (application/pdf)
https://www.mdpi.com/2071-1050/13/15/8274/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jsusta:v:13:y:2021:i:15:p:8274-:d:600551
Access Statistics for this article
Sustainability is currently edited by Ms. Alexandra Wu
More articles in Sustainability from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().