EconPapers    
Economics at your fingertips  
 

Endogenous growth, spatial dynamics and convergence: A refinement

Raouf Boucekkine (), Carmen Camacho () and Weihua Ruan ()
Additional contact information
Carmen Camacho: PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École nationale des ponts et chaussées - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, PJSE - Paris Jourdan Sciences Economiques - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École nationale des ponts et chaussées - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Weihua Ruan: Purdue University [West Lafayette]

PSE Working Papers from HAL

Abstract: The dynamics of capital distribution across space are an important topic in economic geography and, more recently, in growth theory. In particular, the spatial AK model has been intensively studied in the latter stream. It turns out that the positivity of optimal capital stocks over time and space for any initial capital spatial distribution has not been entirely settled even in the simple linear AK case. We use Ekeland's variational principle together with Pontrya-gin's maximum principle to solve an optimal spatiotemporal AK model with a state constraint (non-negative capital stock), where the capital law of motion follows a diffusion equation. We derive the necessary optimality conditions to ensure the solution satisfies the state constraints for all times and locations. The maximum principle enables the reduction of the infinite-horizon optimal control problem to a finite-horizon problem, ultimately proving the uniqueness of the optimal solution with positive capital and the non-existence of such a solution when the time discount rate is either too large or too small.

Keywords: Diffusion and growth; Optimal Control; State constraint; Ekeland's variational principle; Convergence (search for similar items in EconPapers)
Date: 2025-05
New Economics Papers: this item is included in nep-geo and nep-gro
Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-04630098v2
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://shs.hal.science/halshs-04630098v2/document (application/pdf)

Related works:
Working Paper: Endogenous growth, spatial dynamics and convergence: A refinement (2025) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:psewpa:halshs-04630098

Access Statistics for this paper

More papers in PSE Working Papers from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-05-29
Handle: RePEc:hal:psewpa:halshs-04630098