EconPapers    
Economics at your fingertips  
 

Hyper-Stable Social Welfare Functions

Jean Lainé, Ali Ozkes and Remzi Sanver

Working Papers from HAL

Abstract: We introduce a new consistency condition for neutral social welfare functions, called hyperstability. A social welfare function a selects a complete weak order from a profile PN of linear orders over any finite set of alternatives, given N individuals. Each linear order P in PN generates a linear order over orders of alternatives,called hyper-preference, by means of a preference extension. Hence each profile PN generates a hyper-profile ˙PN. We assume that all preference extensions are separable: the hyper-preference of some order P ranks order Q above order Q0 if the set of alternative pairs P and Q agree on contains the one P and Q0 agree on. A special sub-class of separable extensions contains all Kemeny extensions, which build hyper-preferences by using the Kemeny distance criterion. A social welfare function a is hyper-stable (resp. Kemeny-stable) if at any profile PN, at least one linearization of a(PN) is ranked first by a( ˙PN), where ˙PN is any separable (resp. Kemeny) hyper-profile induced from PN. We show that no scoring rule is hyper-stable, and that no unanimous scoring rule is Kemeny-stable, while there exists a hyper-stable Condorcet social welfare function.

Keywords: Hyperpreferences; Kemeny distance; Social Welfare Functions; Stability (search for similar items in EconPapers)
Date: 2014-03-03
New Economics Papers: this item is included in nep-mic
Note: View the original document on HAL open archive server: https://hal.science/hal-00871312v2
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://hal.science/hal-00871312v2/document (application/pdf)

Related works:
Journal Article: Hyper-stable social welfare functions (2016) Downloads
Working Paper: Hyper-stable social welfare functions (2016)
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:hal-00871312

Access Statistics for this paper

More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-31
Handle: RePEc:hal:wpaper:hal-00871312