EconPapers    
Economics at your fingertips  
 

Reachability Analysis of Low-Order Discrete State Reaction Networks Obeying Conservation Laws

Gergely Szlobodnyik and Gábor Szederkényi

Complexity, 2019, vol. 2019, 1-13

Abstract:

In this paper we study the reachability problem of sub- and superconservative discrete state chemical reaction networks (d-CRNs). It is known that a subconservative network has bounded reachable state space, while that of a superconservative one is unbounded. The reachability problem of superconservative reaction networks is traced back to the reachability of subconservative ones. We consider network structures composed of reactions having at most one input and one output species beyond the possible catalyzers. We give a proof that, assuming all the reactions are charged in the initial and target states, the reachability problems of sub- and superconservative reaction networks are equivalent to the existence of nonnegative integer solution of the corresponding d-CRN state equations. Using this result, the reachability problem is reformulated as an Integer Linear Programming (ILP) feasibility problem. Therefore, the number of feasible trajectories satisfying the reachability relation can be counted in polynomial time in the number of species and in the distance of initial and target states, assuming fixed number of reactions in the system.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2019/1035974.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2019/1035974.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:1035974

DOI: 10.1155/2019/1035974

Access Statistics for this article

More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:complx:1035974