The Improved Antlion Optimizer and Artificial Neural Network for Chinese Influenza Prediction
Hongping Hu,
Yangyang Li,
Yanping Bai,
Juping Zhang and
Maoxing Liu
Complexity, 2019, vol. 2019, 1-12
Abstract:
The antlion optimizer (ALO) is a new swarm-based metaheuristic algorithm for optimization, which mimics the hunting mechanism of antlions in nature. Aiming at the shortcoming that ALO has unbalanced exploration and development capability for some complex optimization problems, inspired by the particle swarm optimization (PSO), the updated position of antlions in elitism operator of ALO is improved, and thus the improved ALO (IALO) is obtained. The proposed IALO is compared against sine cosine algorithm (SCA), PSO, Moth-flame optimization algorithm (MFO), multi-verse optimizer (MVO), and ALO by performing on 23 classic benchmark functions. The experimental results show that the proposed IALO outperforms SCA, PSO, MFO, MVO, and ALO according to the average values and the convergence speeds. And the proposed IALO is tested to optimize the parameters of BP neural network for predicting the Chinese influenza and the predicted model is built, written as IALO-BPNN, which is against the models: BPNN, SCA-BPNN, PSO-BPNN, MFO-BPNN, MVO-BPNN, and ALO-BPNN. It is shown that the predicted model IALO-BPNN has smaller errors than other six predicted models, which illustrates that the IALO has potentiality to optimize the weights and basis of BP neural network for predicting the Chinese influenza effectively. Therefore, the proposed IALO is an effective and efficient algorithm suitable for optimization problems.
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2019/1480392.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2019/1480392.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:1480392
DOI: 10.1155/2019/1480392
Access Statistics for this article
More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().