Technoeconomic Distribution Network Planning Using Smart Grid Techniques with Evolutionary Self-Healing Network States
Jesus Nieto-Martin,
Timoleon Kipouros,
Mark Savill,
Jennifer Woodruff and
Jevgenijs Butans
Complexity, 2018, vol. 2018, 1-18
Abstract:
The transition to a secure low-carbon system is raising a set of uncertainties when planning the path to a reliable decarbonised supply. The electricity sector is committing large investments in the transmission and distribution sector upon 2050 in order to ensure grid resilience. The cost and limited flexibility of traditional approaches to 11 kV network reinforcement threaten to constrain the uptake of low-carbon technologies. This paper investigates the suitability and cost-effectiveness of smart grid techniques along with traditional reinforcements for the 11 kV electricity distribution network, in order to analyse expected investments up to 2050 under different DECC demand scenarios. The evaluation of asset planning is based on an area of study in Milton Keynes (East Midlands, United Kingdom), being composed of six 11 kV primaries. To undertake this, the analysis used a revolutionary new model tool for electricity distribution network planning, called scenario investment model (SIM). Comprehensive comparisons of short- and long-term evolutionary investment planning strategies are presented. The work helps electricity network operators to visualise and design operational planning investments providing bottom-up decision support.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2018/1543179.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2018/1543179.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:1543179
DOI: 10.1155/2018/1543179
Access Statistics for this article
More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().