EconPapers    
Economics at your fingertips  
 

Joint Channel Allocation and Power Control Based on Long Short-Term Memory Deep Q Network in Cognitive Radio Networks

Zifeng Ye, Yonghua Wang and Pin Wan

Complexity, 2020, vol. 2020, 1-11

Abstract:

Efficient spectrum resource management in cognitive radio networks (CRNs) is a promising method that improves the utilization of spectrum resource. In particular, the power control and channel allocation are of top priorities in spectrum resource management. Nevertheless, the joint design of power control and channel allocation is an NP-hard problem and the research is still in the preliminary stage. In this paper, we propose a novel joint approach based on long short-term memory deep Q network (LSTM-DQN). Our objective is to obtain the channel allocation schemes of the access points (APs) and the power control strategies of the secondary users (SUs). Specifically, the received signal strength information (RSSI) collected by the microbase stations is used as the input of LSTM-DQN. In this way, the collection of RSSI can be shared between users. After the training is completed, the APs are capable of selecting channels with small interference while the SUs may access the authorized channels in an underlay operation mode without knowing any knowledge about the primary users (PUs). Experimental results show that the channels are allocated to the APs with a lower probability of collision. Moreover, the SUs can adjust their power control strategies quickly to avoid the harmful interference to the PUs when the environment parameters change randomly. Consequently, the overall performance of CRNs and the utilization of spectrum resources are improved significantly compared to existing popular solutions.

Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2020/1628023.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2020/1628023.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:1628023

DOI: 10.1155/2020/1628023

Access Statistics for this article

More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:complx:1628023