EconPapers    
Economics at your fingertips  
 

Option Pricing under Two-Factor Stochastic Volatility Jump-Diffusion Model

Guohe Deng

Complexity, 2020, vol. 2020, 1-15

Abstract:

Empirical evidence shows that single-factor stochastic volatility models are not flexible enough to account for the stochastic behavior of the skew, and certain financial assets may exhibit jumps in returns and volatility. This paper introduces a two-factor stochastic volatility jump-diffusion model in which two variance processes with jumps drive the underlying stock price and then considers the valuation on European style option. We derive a semianalytical formula for European vanilla option and develop a fast and accurate numerical algorithm for the computation of the option prices using the fast Fourier transform (FFT) technique. We compare the volatility smile and probability density of the proposed model with those of alternative models, including the normal jump diffusion model and single-factor stochastic volatility model with jumps, respectively. Finally, we provide some sensitivity analysis of the model parameters to the options and several calibration tests using option market data. Numerical examples show that the proposed model has more flexibility to capture the implied volatility term structure and is suitable for empirical work in practice.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2020/1960121.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2020/1960121.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:1960121

DOI: 10.1155/2020/1960121

Access Statistics for this article

More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:complx:1960121