EconPapers    
Economics at your fingertips  
 

Modeling and Dynamic Characteristics Analysis of Blade-Disk Dual-Rotor System

Zhenyong Lu, Shun Zhong, Huizheng Chen, Yushu Chen, Jiajie Han and Chao Wang

Complexity, 2020, vol. 2020, 1-13

Abstract:

In this paper, a simplified dynamic model of a dual-rotor system coupled with blade disk is built, and the effects of blade parameters of an aircraft engine on the dynamic characteristics of a dual-rotor system are studied. In the methodology, the blade is simplified as a cantilever structure, and the dynamical equations are obtained by the means of a finite element method. The amplitude-frequency response curves and orbits of shaft centre-vibration shape diagram are used to analyze the effects of blade parameters on dynamic characteristics of a dual-rotor system. The results indicate that the properties of the blades have huge impacts on the critical speed and other dynamic characteristics of the system. With an increase of the length of the blade, the second-order critical speed decreases obviously, but the first-order critical speed is almost invariant; this means that the blades attached on the low-pressure compressor do not affect the first-order critical speed of the dual-rotor system. Meanwhile, note that the high-pressure rotor and low-pressure turbine rotor can excite the first-order resonance of the dual-rotor system, while the low-pressure compressor rotor can only excite the second-order resonance, and then the dynamic model of this six-point support dual-rotor system can further be simplified as a relatively independent single-rotor system with one disk and a four-support dual-rotor system with dual disks.

Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2020/2493169.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2020/2493169.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:2493169

DOI: 10.1155/2020/2493169

Access Statistics for this article

More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:complx:2493169