Forecasting CDS Term Structure Based on Nelson–Siegel Model and Machine Learning
Won Joong Kim,
Gunho Jung and
Sun-Yong Choi
Complexity, 2020, vol. 2020, 1-23
Abstract:
In this study, we analyze the term structure of credit default swaps (CDSs) and predict future term structures using the Nelson–Siegel model, recurrent neural network (RNN), support vector regression (SVR), long short-term memory (LSTM), and group method of data handling (GMDH) using CDS term structure data from 2008 to 2019. Furthermore, we evaluate the change in the forecasting performance of the models through a subperiod analysis. According to the empirical results, we confirm that the Nelson–Siegel model can be used to predict not only the interest rate term structure but also the CDS term structure. Additionally, we demonstrate that machine-learning models, namely, SVR, RNN, LSTM, and GMDH, outperform the model-driven methods (in this case, the Nelson–Siegel model). Among the machine learning approaches, GMDH demonstrates the best performance in forecasting the CDS term structure. According to the subperiod analysis, the performance of all models was inconsistent with the data period. All the models were less predictable in highly volatile data periods than in less volatile periods. This study will enable traders and policymakers to invest efficiently and make policy decisions based on the current and future risk factors of a company or country.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2020/2518283.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2020/2518283.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:2518283
DOI: 10.1155/2020/2518283
Access Statistics for this article
More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().