EconPapers    
Economics at your fingertips  
 

Automated Prediction of Good Dictionary EXamples (GDEX): A Comprehensive Experiment with Distant Supervision, Machine Learning, and Word Embedding-Based Deep Learning Techniques

Muhammad Yaseen Khan, Abdul Qayoom, Muhammad Suffian Nizami, Muhammad Shoaib Siddiqui, Shaukat Wasi, Syed Muhammad Khaliq-ur-Rahman Raazi and Shahzad Sarfraz

Complexity, 2021, vol. 2021, 1-18

Abstract: Dictionaries not only are the source of getting meanings of the word but also serve the purpose of comprehending the context in which the words are used. For such purpose, we see a small sentence as an example for the very word in comprehensive book-dictionaries and more recently in online dictionaries. The lexicographers perform a very meticulous activity for the elicitation of Good Dictionary EXamples (GDEX)—a sentence that is best fit in a dictionary for the word’s definition. The rules for the elicitation of GDEX are very strenuous and require a lot of time for committing the manual process. In this regard, this paper focuses on two major tasks, i.e., the development of labelled corpora for top 3K English words through the usage of distant supervision approach and devising a state-of-the-art artificial intelligence-based automated procedure for discriminating Good Dictionary EXamples from the bad ones. The proposed methodology involves a suite of five machine learning (ML) and five word embedding-based deep learning (DL) architectures. A thorough analysis of the results shows that GDEX elicitation can be done by both ML and DL models; however, DL-based models show a trivial improvement of 3.5% over the conventional ML models. We find that the random forests with parts-of-speech information and word2vec-based bidirectional LSTM are the most optimal ML and DL combinations for automated GDEX elicitation; on the test set, these models, respectively, secured a balanced accuracy of 73% and 77%.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/complexity/2021/2553199.pdf (application/pdf)
http://downloads.hindawi.com/journals/complexity/2021/2553199.xml (application/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:2553199

DOI: 10.1155/2021/2553199

Access Statistics for this article

More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:complx:2553199