Recent Progress of Anomaly Detection
Xiaodan Xu,
Huawen Liu and
Minghai Yao
Complexity, 2019, vol. 2019, 1-11
Abstract:
Anomaly analysis is of great interest to diverse fields, including data mining and machine learning, and plays a critical role in a wide range of applications, such as medical health, credit card fraud, and intrusion detection. Recently, a significant number of anomaly detection methods with a variety of types have been witnessed. This paper intends to provide a comprehensive overview of the existing work on anomaly detection, especially for the data with high dimensionalities and mixed types, where identifying anomalous patterns or behaviours is a nontrivial work. Specifically, we first present recent advances in anomaly detection, discussing the pros and cons of the detection methods. Then we conduct extensive experiments on public datasets to evaluate several typical and popular anomaly detection methods. The purpose of this paper is to offer a better understanding of the state-of-the-art techniques of anomaly detection for practitioners. Finally, we conclude by providing some directions for future research.
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2019/2686378.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2019/2686378.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:2686378
DOI: 10.1155/2019/2686378
Access Statistics for this article
More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().