EconPapers    
Economics at your fingertips  
 

SDTRLS: Predicting Drug-Target Interactions for Complex Diseases Based on Chemical Substructures

Cheng Yan, Jianxin Wang, Wei Lan, Fang-Xiang Wu and Yi Pan

Complexity, 2017, vol. 2017, 1-10

Abstract:

It is well known that drug discovery for complex diseases via biological experiments is a time-consuming and expensive process. Alternatively, the computational methods provide a low-cost and high-efficiency way for predicting drug-target interactions (DTIs) from biomolecular networks. However, the current computational methods mainly deal with DTI predictions of known drugs; there are few methods for large-scale prediction of failed drugs and new chemical entities that are currently stored in some biological databases may be effective for other diseases compared with their originally targeted diseases. In this study, we propose a method (called SDTRLS) which predicts DTIs through RLS-Kron model with chemical substructure similarity fusion and Gaussian Interaction Profile (GIP) kernels. SDTRLS can be an effective predictor for targets of old drugs, failed drugs, and new chemical entities from large-scale biomolecular network databases. Our computational experiments show that SDTRLS outperforms the state-of-the-art SDTNBI method; specifically, in the G protein-coupled receptors (GPCRs) external validation, the maximum and the average AUC values of SDTRLS are 0.842 and 0.826, respectively, which are superior to those of SDTNBI, which are 0.797 and 0.766, respectively. This study provides an important basis for new drug development and drug repositioning based on biomolecular networks.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2017/2713280.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2017/2713280.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:2713280

DOI: 10.1155/2017/2713280

Access Statistics for this article

More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:complx:2713280