EconPapers    
Economics at your fingertips  
 

Load Estimation of Complex Power Networks from Transformer Measurements and Forecasted Loads

Haina Rong and Francisco de León

Complexity, 2020, vol. 2020, 1-14

Abstract:

This paper presents a load estimation method applicable to complex power networks (namely, heavily meshed secondary networks) based on available network transformer measurements. The method consists of three steps: network reduction, load forecasting, and state estimation. The network is first mathematically reduced to the terminals of loads and measurement points. A load forecasting approach based on temperature is proposed to solve the network unobservability. The relationship between outdoor temperature and power consumption is studied. A power-temperature curve, a nonlinear function, is obtained to forecast loads as the temperature varies. An “effective temperature” reflecting complex weather conditions (sun irradiation, humidity, rain, etc.) is introduced to properly consider the effect on the power consumption of cooling and heating devices. State estimation is adopted to compute loads using network transformer measurements and forecasted loads. Experiments conducted on a real secondary network in New York City with 1040 buses verify the effectiveness of the proposed method.

Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2020/2941809.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2020/2941809.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:2941809

DOI: 10.1155/2020/2941809

Access Statistics for this article

More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:complx:2941809