A Novel Approach to a Time-Dependent-Coefficient WBK System: Doubly Periodic Waves and Singular Nonlinear Dynamics
Bo Xu and
Sheng Zhang
Complexity, 2018, vol. 2018, 1-14
Abstract:
Under investigation in this paper is a more general time-dependent-coefficient Whitham-Broer-Kaup (tdcWBK) system, which includes some important models as special cases, such as the approximate equations for long water waves, the WBK equations in shallow water, the Boussinesq-Burgers equations, and the variant Boussinesq equations. To construct doubly periodic wave solutions, we extend the generalized -expansion method for the first time to the tdcWBK system. As a result, many new Jacobi elliptic doubly periodic solutions are obtained; the limit forms of which are the hyperbolic function solutions and trigonometric function solutions. It is shown that the original -expansion method cannot derive Jacobi elliptic doubly periodic solutions of the tdcWBK system, but the novel approach of this paper is valid. To gain more insight into the doubly periodic waves contained in the tdcWBK system, we simulate the dynamical evolutions of some obtained Jacobi elliptic doubly periodic solutions. The simulations show that the doubly periodic waves possess time-varying amplitudes and velocities as well as singularities in the process of propagations.
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2018/3158126.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2018/3158126.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:3158126
DOI: 10.1155/2018/3158126
Access Statistics for this article
More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().