A Two-Level Metaheuristic for the Job-Shop Scheduling Problem with Multipurpose Machines
Pisut Pongchairerks and
Yu Zhou
Complexity, 2022, vol. 2022, 1-17
Abstract:
This paper proposes a two-level metaheuristic consisting of lower- and upper-level algorithms for the job-shop scheduling problem with multipurpose machines. The lower-level algorithm is a local search algorithm used for finding an optimal solution. The upper-level algorithm is a population-based metaheuristic used to control the lower-level algorithm’s input parameters. With the upper-level algorithm, the lower-level algorithm can reach its best performance on every problem instance. Most changes of the proposed two-level metaheuristic from its original variants are in the lower-level algorithm. A main purpose of these changes is to increase diversity into solution neighborhood structures. One of the changes is that the neighbor operators of the proposed lower-level algorithm are developed to be more adjustable. Another change is that the roulette-wheel technique is applied for selecting a neighbor operator and for generating a perturbation operator. In addition, the proposed lower-level algorithm uses an adjustable delay-time limit to select an optional machine for each operation. The performance of the proposed two-level metaheuristic was evaluated on well-known benchmark instances. The evaluation’s results indicated that the proposed two-level metaheuristic performs well on most benchmark instances.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/complexity/2022/3487355.pdf (application/pdf)
http://downloads.hindawi.com/journals/complexity/2022/3487355.xml (application/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:3487355
DOI: 10.1155/2022/3487355
Access Statistics for this article
More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().