Entropy-Driven Global Best Selection in Particle Swarm Optimization for Many-Objective Software Package Restructuring
Amarjeet Prajapati,
Anshu Parashar,
Sunita,
Alok Mishra and
Zeljko Stevic
Complexity, 2021, vol. 2021, 1-11
Abstract:
Many real-world optimization problems usually require a large number of conflicting objectives to be optimized simultaneously to obtain solution. It has been observed that these kinds of many-objective optimization problems (MaOPs) often pose several performance challenges to the traditional multi-objective optimization algorithms. To address the performance issue caused by the different types of MaOPs, recently, a variety of many-objective particle swarm optimization (MaOPSO) has been proposed. However, external archive maintenance and selection of leaders for designing the MaOPSO to real-world MaOPs are still challenging issues. This work presents a MaOPSO based on entropy-driven global best selection strategy (called EMPSO) to solve the many-objective software package restructuring (MaOSPR) problem. EMPSO makes use of the entropy and quality indicator for the selection of global best particle. To evaluate the performance of the proposed approach, we applied it over the five MaOSPR problems. We compared it with eight variants of MaOPSO, which are based on eight different global best selection strategies. The results indicate that the proposed EMPSO is competitive with respect to the existing global best selection strategies based on variants of MaOPSO approaches.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/complexity/2021/3974635.pdf (application/pdf)
http://downloads.hindawi.com/journals/complexity/2021/3974635.xml (application/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:3974635
DOI: 10.1155/2021/3974635
Access Statistics for this article
More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().