Rich Dynamics of a Predator-Prey System with Different Kinds of Functional Responses
Kankan Sarkar,
Subhas Khajanchi,
Prakash Chandra Mali and
Juan J. Nieto
Complexity, 2020, vol. 2020, 1-19
Abstract:
In this study, we investigate a mathematical model that describes the interactive dynamics of a predator-prey system with different kinds of response function. The positivity, boundedness, and uniform persistence of the system are established. We investigate the biologically feasible singular points and their stability analysis. We perform a comparative study by considering different kinds of functional responses, which suggest that the dynamical behavior of the system remains unaltered, but the position of the bifurcation points altered. Our model system undergoes Hopf bifurcation with respect to the growth rate of the prey population, which indicates that a periodic solution occurs around a fixed point. Also, we observed that our predator-prey system experiences transcritical bifurcation for the prey population growth rate. By using normal form theory and center manifold theorem, we investigate the direction and stability of Hopf bifurcation. The biological implications of the analytical and numerical findings are also discussed in this study.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2020/4285294.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2020/4285294.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:4285294
DOI: 10.1155/2020/4285294
Access Statistics for this article
More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().