EconPapers    
Economics at your fingertips  
 

Stability and Hopf Bifurcation in a Three-Component Planktonic Model with Spatial Diffusion and Time Delay

Kejun Zhuang, Gao Jia and Dezhi Liu

Complexity, 2019, vol. 2019, 1-17

Abstract:

Due to the different roles that nontoxic phytoplankton and toxin-producing phytoplankton play in the whole aquatic system, a delayed reaction-diffusion planktonic model under homogeneous Neumann boundary condition is investigated theoretically and numerically. This model describes the interactions between the zooplankton and two kinds of phytoplanktons. The long-time behavior of the model and existence of positive constant equilibrium solution are first discussed. Then, the stability of constant equilibrium solution and occurrence of Hopf bifurcation are detailed and analyzed by using the bifurcation theory. Moreover, the formulas for determining the bifurcation direction and stability of spatially bifurcating solutions are derived. Finally, some numerical simulations are performed to verify the appearance of the spatially homogeneous and nonhomogeneous periodic solutions.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2019/4590915.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2019/4590915.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:4590915

DOI: 10.1155/2019/4590915

Access Statistics for this article

More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:complx:4590915