Epidemic Spreading in Complex Networks with Resilient Nodes: Applications to FMD
Pilwon Kim and
Chang Hyeong Lee
Complexity, 2018, vol. 2018, 1-9
Abstract:
At the outbreak of the animal epidemic disease, farms that recover quickly from partially infected state can delay or even suppress the wide spreading of the infection over farm networks. In this work, we focus on how the spatial transmission of the infection is affected by both factors, the topology of networks and the internal resilience mechanism of nodes. We first develop an individual farm model to examine the influence of initial number of infected individuals and vaccination rate on the transmission in a single farm. Based on such intrafarm model, the farm network is constructed which reflects disease transmission between farms at various stages. We explore the impact of the farms vaccinated at low rates on the disease transmission into entire farm network and investigate the effect of the control on hub farms on the transmission over the farm network. It is shown that intensive control on the farms vaccinated at low rates and hub farms effectively reduces the potential risk of foot-and-mouth disease (FMD) outbreak on the farm network.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2018/5024327.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2018/5024327.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:5024327
DOI: 10.1155/2018/5024327
Access Statistics for this article
More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().