EconPapers    
Economics at your fingertips  
 

Legendre Cooperative PSO Strategies for Trajectory Optimization

Lei Liu, Yongji Wang, Fuqiang Xie and Jiashi Gao

Complexity, 2018, vol. 2018, 1-13

Abstract:

Particle swarm optimization (PSO) is a population-based stochastic optimization technique in a smooth search space. However, in a category of trajectory optimization problem with arbitrary final time and multiple control variables, the smoothness of variables cannot be satisfied since the linear interpolation is widely used. In the paper, a novel Legendre cooperative PSO (LCPSO) is proposed by introducing Legendre orthogonal polynomials instead of the linear interpolation. An additional control variable is introduced to transcribe the original optimal problem with arbitrary final time to the fixed one. Then, a practical fast one-dimensional interval search algorithm is designed to optimize the additional control variable. Furthermore, to improve the convergence and prevent explosion of the LCPSO, a theorem on how to determine the boundaries of the coefficient of polynomials is given and proven. Finally, in the numeral simulations, compared with the ordinary PSO and other typical intelligent optimization algorithms GA and DE, the proposed LCPSO has traits of lower dimension, faster speed of convergence, and higher accuracy, while providing smoother control variables.

Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2018/5036791.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2018/5036791.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:5036791

DOI: 10.1155/2018/5036791

Access Statistics for this article

More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:complx:5036791