EconPapers    
Economics at your fingertips  
 

The Hierarchical Iterative Identification Algorithm for Multi-Input-Output-Error Systems with Autoregressive Noise

Jiling Ding

Complexity, 2017, vol. 2017, 1-11

Abstract:

This paper considers the identification problem of multi-input-output-error autoregressive systems. A hierarchical gradient based iterative (H-GI) algorithm and a hierarchical least squares based iterative (H-LSI) algorithm are presented by using the hierarchical identification principle. A gradient based iterative (GI) algorithm and a least squares based iterative (LSI) algorithm are presented for comparison. The simulation results indicate that the H-LSI algorithm can obtain more accurate parameter estimates than the LSI algorithm, and the H-GI algorithm converges faster than the GI algorithm.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2017/5292894.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2017/5292894.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:5292894

DOI: 10.1155/2017/5292894

Access Statistics for this article

More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:complx:5292894