EconPapers    
Economics at your fingertips  
 

A Multiobjective Brain Storm Optimization Algorithm Based on Decomposition

Cai Dai and Xiujuan Lei

Complexity, 2019, vol. 2019, 1-11

Abstract:

Brain storm optimization (BSO) algorithm is a simple and effective evolutionary algorithm. Some multiobjective brain storm optimization algorithms have low search efficiency. This paper combines the decomposition technology and multiobjective brain storm optimization algorithm (MBSO/D) to improve the search efficiency. Given weight vectors transform a multiobjective optimization problem into a series of subproblems. The decomposition technology determines the neighboring clusters of each cluster. Solutions of adjacent clusters generate new solutions to update population. An adaptive selection strategy is used to balance exploration and exploitation. Besides, MBSO/D compares with three efficient state-of-the-art algorithms, e.g., NSGAII and MOEA/D, on twenty-two test problems. The experimental results show that MBSO/D is more efficient than compared algorithms and can improve the search efficiency for most test problems.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2019/5301284.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2019/5301284.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:5301284

DOI: 10.1155/2019/5301284

Access Statistics for this article

More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:complx:5301284