Convergence of Extreme Value Statistics in a Two-Layer Quasi-Geostrophic Atmospheric Model
Vera Melinda Gálfi,
Tamás Bódai and
Valerio Lucarini
Complexity, 2017, vol. 2017, 1-20
Abstract:
We search for the signature of universal properties of extreme events, theoretically predicted for Axiom A flows, in a chaotic and high-dimensional dynamical system. We study the convergence of GEV (Generalized Extreme Value) and GP (Generalized Pareto) shape parameter estimates to the theoretical value, which is expressed in terms of the partial information dimensions of the attractor. We consider a two-layer quasi-geostrophic atmospheric model of the mid-latitudes, adopt two levels of forcing, and analyse the extremes of different types of physical observables (local energy, zonally averaged energy, and globally averaged energy). We find good agreement in the shape parameter estimates with the theory only in the case of more intense forcing, corresponding to a strong chaotic behaviour, for some observables (the local energy at every latitude). Due to the limited (though very large) data size and to the presence of serial correlations, it is difficult to obtain robust statistics of extremes in the case of the other observables. In the case of weak forcing, which leads to weaker chaotic conditions with regime behaviour, we find, unsurprisingly, worse agreement with the theory developed for Axiom A flows.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2017/5340858.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2017/5340858.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:5340858
DOI: 10.1155/2017/5340858
Access Statistics for this article
More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().