EconPapers    
Economics at your fingertips  
 

An Improved Artificial Neural Network Model for Effective Diabetes Prediction

Muhammad Mazhar Bukhari, Bader Fahad Alkhamees, Saddam Hussain, Abdu Gumaei, Adel Assiri, Syed Sajid Ullah and Michela Gelfusa

Complexity, 2021, vol. 2021, 1-10

Abstract: Data analytics, machine intelligence, and other cognitive algorithms have been employed in predicting various types of diseases in health care. The revolution of artificial neural networks (ANNs) in the medical discipline emerged for data-driven applications, particularly in the healthcare domain. It ranges from diagnosis of various diseases, medical image processing, decision support system (DSS), and disease prediction. The intention of conducting the research is to ascertain the impact of parameters on diabetes data to predict whether a particular patient has a disease or not. This paper develops an improved ANN model trained using an artificial backpropagation scaled conjugate gradient neural network (ABP-SCGNN) algorithm to predict diabetes effectively. For validating the performance of the proposed model, we conduct a large set of experiments on a Pima Indian Diabetes (PID) dataset using accuracy and mean squared error (MSE) as evaluation metrics. We use different number of neurons in the hidden layer, ranging from 5 to 50, to train the ANN models. The experimental results show that the ABP-SCGNN model, containing 20 neurons, attains 93% accuracy on the validation set, which is higher than using the other ANNs models. This result confirms the model’s effectiveness and efficiency in predicting diabetes disease from the required data attributes.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/complexity/2021/5525271.pdf (application/pdf)
http://downloads.hindawi.com/journals/complexity/2021/5525271.xml (application/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:5525271

DOI: 10.1155/2021/5525271

Access Statistics for this article

More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:complx:5525271