EconPapers    
Economics at your fingertips  
 

Deep CNN and Deep GAN in Computational Visual Perception-Driven Image Analysis

R. Nandhini Abirami, P. M. Durai Raj Vincent, Kathiravan Srinivasan, Usman Tariq, Chuan-Yu Chang and Dr Shahzad Sarfraz

Complexity, 2021, vol. 2021, 1-30

Abstract: Computational visual perception, also known as computer vision, is a field of artificial intelligence that enables computers to process digital images and videos in a similar way as biological vision does. It involves methods to be developed to replicate the capabilities of biological vision. The computer vision’s goal is to surpass the capabilities of biological vision in extracting useful information from visual data. The massive data generated today is one of the driving factors for the tremendous growth of computer vision. This survey incorporates an overview of existing applications of deep learning in computational visual perception. The survey explores various deep learning techniques adapted to solve computer vision problems using deep convolutional neural networks and deep generative adversarial networks. The pitfalls of deep learning and their solutions are briefly discussed. The solutions discussed were dropout and augmentation. The results show that there is a significant improvement in the accuracy using dropout and data augmentation. Deep convolutional neural networks’ applications, namely, image classification, localization and detection, document analysis, and speech recognition, are discussed in detail. In-depth analysis of deep generative adversarial network applications, namely, image-to-image translation, image denoising, face aging, and facial attribute editing, is done. The deep generative adversarial network is unsupervised learning, but adding a certain number of labels in practical applications can improve its generating ability. However, it is challenging to acquire many data labels, but a small number of data labels can be acquired. Therefore, combining semisupervised learning and generative adversarial networks is one of the future directions. This article surveys the recent developments in this direction and provides a critical review of the related significant aspects, investigates the current opportunities and future challenges in all the emerging domains, and discusses the current opportunities in many emerging fields such as handwriting recognition, semantic mapping, webcam-based eye trackers, lumen center detection, query-by-string word, intermittently closed and open lakes and lagoons, and landslides.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://downloads.hindawi.com/journals/complexity/2021/5541134.pdf (application/pdf)
http://downloads.hindawi.com/journals/complexity/2021/5541134.xml (application/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:5541134

DOI: 10.1155/2021/5541134

Access Statistics for this article

More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:complx:5541134